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Abstract. We calculate the direct average ((M) of the number of metastable in the 
projection d e  neural network by mans  of the saddle-pin1 method. (0) is obtained as a 
function of the Hamming distance g to a given pattern, stability y and energy E .  The critical 
storage capacity of the model is calculated. The examination of the energy dependence of (0) 
leads to lower bounds for the energies of the spin-glass states. 

1. Introduction 

In spin glasses [l-31, and attractor neural networks 14.51. information about the ground state 
can be gained by two methods. The first one deals with the calculation of the thermodynamic 
properties. It is assumed that the spin system is in thermodynamic equilibrium with a heat 
bath at temperature T .  So the free energy and the order parameters can be calculated, in 
the limit T + 0 the ground state energy is obtained. 

The second method consists of the calculation of the number N of metastable states. 
These are states in which the spin system can be trapped during a zero-temperature dynamic 
process. If N is calculated as a function of energy E ,  the zero of 

yields the gound state energy. In this paper this method is applied to the projection rule 
neural network [U] for which the thermodynamic properties have been calculated in [9]. 
The paper is organized as follows. In the remainder of the introduction some known results 
about the calculation of N are presented in the context of the Sherrington-Kirkpatrick model 
of spin glasses (SK model) and of the Hopfield model. In section 2 the projection mle 
neural network ( P R " )  is presented. The mean number of metastable states is calculated in 
section 3. The results are given in section 4. where conclusions about the retrieval properties 
of the P R "  will be drawn. Finally the results are discussed in section 5. 

1.1. The definition of a metastable state 

In general, spin-glass models and attractor neural networks are systems consisting of N Ising 
spins Si E [-1, +I}, with couplings Ji, between them. It is a well known result that the 

0305-4470/94/175857~14$19.50 @ 1994 IOP Publishing Ltd 5851 



5858 

serial Glauber heat-bath pmass [lo] converges to a Boltzmann distribution with an energy 
function 

P Kuhlmann and J K Anhuf 

.. 
1.I 

if Jij is symmetric and there are no self-couplings (Jii = 0 Vi) ,  e.g., see [4]. If the 
temperature T of the heat bath is zero, the serial Glauber dynamics becomes deterministic: 
in a time step Af one single randomly or sequentially chosen spin Si is updated according 
to 

Si(f -k A f )  =sign(&@)) (3) 

where 

N 

ui ( t )  = JjjSj(f) 
j=1 

(4) 

is the local field at site i .  
A state 

- s = (S*, . . . , SN)T 

is called metastable, if it is a fixed point of the dynamics (3) 

Si = signui Vi.  

Hence the local energies Aj satisfy equivalently 

Ai = Siui > 0 Vi. (5) 

If Jij is symmetric and there are no self-couplings (Jii = 0 Vi),  the serial T = 0 Glauber 
dynamics can only flow to metastable states. There are no cycles in this case [4]. Therefore 
a calculation of the number of metastable states is strongly connected to serial dynamics 
and the corresponding energy function E (see equation (2)). In parallel dynamics the cycles 
outnumber the metastable states Ill]. In this case a different energy function has to be 
considered [12,13] and the number of cycles will be most important for parallel dynamics. 

1.2. The densiiy of metastable sfates 

The density of metastable states can be calculated by setting 

where the @-function is defined by 

for x > 0 
@ ( x )  = 



The pmjecfion rule neural network 5859 

As required above, N is a function of energy, because E is a parameter that denotes the 
negative energy per site: 

E 
N' 

E = -- (7) 

In the case of spin glasses and attractor neural networks the couplings Jij have a 
probability distribution P ( { J i j ] ) .  Due to the effect of frustration in these models, we  expect 
the behaviour 

(see equation (I)), where h is self-averaging in the limit N -+ CO. If ((h)) denotes the 
average of h over the J i j ,  e"((") can be regarded as an asymptotic expression for N .  
Jensen's inequality 1141 states that ((h)) is bounded by the direct average: 

< ((e"')) = ((N)). (9) 

1.3. N in the SK mdel  

In the SK model of spin glasses the couplings Jij are Gaussian distributed with zero mean 
and standard deviation U = l / a .  In their original work [15], Shenington and Kirbatrick 
calculated the thermodynamic properties in replica symmetry. By introducing a scheme of 
replica symmetry breaking, Parisi constructed what is believed to be the exact solution of 
the SK model [16]. The direct average of the number of metastable states ((N)) has been 
calculated by Tanaka and Edwards [17], and an upper bound for the negative energy (per 
spin) E of the spin-glass ground state has been gained by Bray and Moore [18], 

, EB = 0.791. c = - - <  E 
N 

The replica symmetric theory for ((h)) was solved by Roberts [19]. He discovered that only 
in a region of low €-values does the inequality (9) become an equality: 

E 
E = - ~ j  < EO = 0.672. 

Hence the direct average could not be expected to yield a good approximation for the 
ground-state energy. But in his replica symmetric calculation of ((h)) Roberts obtained 

for the negative energy (per spin) of the spin-glass ground state. This was in good agreement 
with the Parisi result (6p = 0.7633 + 1.E - 4) and results from computer simulations 
(ES =0.76*0.01) [16]. 
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1.4. N in #he Hopfield model 

In the Hopfield model 1201 p = a N  patterns 

P Kuhlmnma and J K Aniauf 

with 

(:€{-1,+1) V = l ,  ..., p i = l ,  ..., N 
should be stored by Hebb‘s coupling matrix 

Since the Jij are correlated, the average over the independent 

I t: p ( t :  = f l )  = 

has to be taken. 
For a constant a = p / N ,  the direct average ((N)) has been calculated by Gardner [21] 

in the limit N + CO. Details of the calculation may be found in [22] and in [23]. Gardner 
included the Hamming distance g to a specified (e.g. the first) pattern in her calculation. g 
is defined by the overlap m’ to the first pattern, 

So g denotes the fraction of the wrong bits in a state. 
For 01 -= 0.1 13, Gardner observed a distinct band of metastable states near the pattern. 

The band is responsible for the retrieval, and the thermodynamic ground state [24] is believed 
to be part of the band. 

For (Y + CO, the correlations between the J t j  vanish and the SK result 

1 
N-m N lim - In((N)) = 0.1992 

is recovered. 

2. The model 

In the projection rule neural network we are considering, p = a N  patterns 

with 

& “ € { - l , + l ]  u = l ,  ..., p i = l ,  ..., N 
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have to be stored [7-91. The patterns are chosen according to the independent probability 
distribution (p( f :  = +l)  = i) 2 '  

If CY c 1 is kept fixed and the limit N -+ CO is taken, they are linearly independent 
with probability 1 [9,25]. Hence the correlation mahix 

is positive-definite, and the projection rule coupling matrix 

is well defined. For CY c 1, Jij projects every state 3 E [+l, -]IN into the space of the 
patterns: if we consider the unique decomposition of a general state 

where 
- S is 

is orthogonal to all the pattems, then the action of the projection mahix (13) on 

In particular, the pattems have a high stability, because the local energies (5) of the patterns 
obey 

N 

A: = 5: C = 1 Vi, p. (16) 

Indeed, it has been shown that the p patterns are the stable ground states for all CY c 1 
[9]. So the projection rule neural network can be used as an associative memory. To 
establish the relationship between the thermodynamic calculation in [9] and our calculation 
of the direct average ((N)) the self-couplings Jii should be excluded in the local fields in 
equation (4). Thus, equation (5) reads 

j = l  

N 

Instead of equation (17) we impose the constraint 

in OUT analytical calculation. The stability parameter y is a threshold for the local energies 
hi.  y = a can be related to the network without self-couplings as follows. We calculate 
the probability distribution P ( J )  of Jii in the limit N -+ CO. A beta distribution 1261 with 
mean ((Jii)) = (Y and standard deviation U = z/cu(l - a ) / ( N / 2  + 1) is gained: 

P ( J )  = @ ( J  - Jii ) ) )  (19) 

Hence it is shown that Jii is self-averaging in the limit N + CO, because 0 -P 0 (N -+ w). 
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3. The mean number of metastable states in the PRNN 

Using equation (6) we obtain 

The prime denotes the restricted sum over all the states [S i )  that have a fixed Hamming 
distance g to the first pattern and are uncorrelated to all the other patterns (see equation (1 1)). 
y is the stability parameter specified above in equation (18). E = - E / N  denotes the 
negative energy E per site. Note that 

1 1 1 
2 E = +-E JjxSjSx = - JjxSjSx + -U 

2N j . k  2N i.kU#ka) 

because the relation cj”=, Jj, = Na holds for all N. Since Kanter and Sompolinsky also 
included the constant term in the energy, their results [91 CM be compared with our results 
for the dependence of N on E. 

We perform the average ((N)) = (I/ZNP) &r, N by means of the saddle-point method, 
which becomes exact in the limit N --f 03. DeMls of the computation may be found in the 
appendix and in [271. 

We obtain the result 

f ( a ,  g, y ,  E) is the saddle-point value with respect to the variables X, Y,  2, ut ,  1 1 ,  w of 

f ( a y , g , y , E , X , y , Z , a l . [ l . w )  
= - g Ing - (1 - g) In(1 - g) - IY Ina - (1 -a) ln(1 -a) 

a 1 WZZ 
- W E +  - I ~ ( Y ’ -  XZ) - - I n K +  - 

2 2 8K 

where 

K = (1 - Y)’ - xz 
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and 

The order parameters Z and w can be interpreted as follows. Z = E:=, a;. where the 
a ,  (U E [ 1, . . . , p ] )  are the coefficients in the linear combination (15) that results from the 
projection of a state into the space of the patterns. w indicates where f is at its maximum 
cm with respect to E: w = 0 if t = E - .  

4. Results 

The saddIe-point equations for the order parameters X, Y, Z, a,, 11 and w have been solved 
in various regions of the space of the four parameters capacity a, Hamming distance g, 
stability y and negative energy per site E. For the stability y we will only be interested in 
y = 0 and y = a. As stated above (see section 2) in the y = 0 case the self-couplings 
are included in the local fields, whereas y = a is put in relation to the network without 
self-couplings. 

4.1. The total number of metastable states 

I f f  = IimN+,&/N) In((m) is maximized with respect to energy E and Hamming distance 
g we obtain at = 0.11 = 0 and w = 0 in equation (24). Of course the Hamming distance 
to the first pattern is g = 4 at the maximum, and almost all the metastable states are 
uncorrelated to all the patterns. We shall call such a state that resides at the maximum of 
f a typical metastable state. The corresponding curves for y = 0 and y = a are shown in 
figure 1. The curve for y = a looks similar to a curve of simulation results for the mean 
remanent magnetization m, at g = in the model without self-couplings as obtained by 
Henkel and Opper [28]. Henkel and Opper defined m, by the overlap 

where 3 denotes a random starting state and 3"' denotes the corresponding stopping state 
of the serial T = 0 Glauber dynamics, i.e. a particular metastable state. Although the exact 
relationship between m, and f is not known, it can be seen &om figure 2 that they increase 
similarly. It is obvious that a stopping state will be closer to a starting state, if there are 
more traps for the dynamics. 

In the limit (Y + 1 we observe f + In2 in figure 1 for both y = 0 and y = a. It is 
easily seen from equation (16) that the coupling matrix .It, converges to the identity matrix 
as a + 1 and that for y = 0 all the states will be metastable in this limit. Nevertheless 
one has to note that for all OL < 1 a typical metastable state has a component in the space 
that is orthogonal to the space spanned by the patterns. If the converse were true, i.e. if 
a typical metastable state lay fully in the space of the patterns, then E = 4 should hold 
for it because of equations (16) and (22). But emax < is observed as a solution of the 
saddlepoint equations for all a < 1. 

In the y = (Y case, even the patterns are unstable for a = 1. So the limit 
f ( y  = (U) + ln2 (a + 1) is not reached; for a = 1 there are no metastable states in 
the y = o! case. 



5864 P Kuhlmann and J K Anlauf 

0,7 L.0 , 

0.24 . 
03/, , , , I 1 j:j , , , , , , , .,... , , ..I." , ,..;;', , 

0.3 ._.._*..'..' 
0.2 ...... /. 

0.i I' 

0 1  

0.0 0.0 
0.0 0.1 0,Z 0.J 0,4 0.5 0.6 0.7 0.8 0.9 1.0 0,O 0.1 0.2 0.3 0.4 0.5 0.8 0,7 0.8 03 

U a 

Plgure 1. The exponent f in (0) - exp(Nf) as 
a function of Q at the Hamming distance g = f and 
f = fmm, The broken line zfm to stabilitj y = 0. 
while the full line corresponds to y =U. 

Figure 2 ?%e remanent magnetization m, in a serial 
r = 0 Glauber process. 'IXs simulation for lhe PR" 
without selfcouplings has been performed by Henkel 
and opper p81. 

In the limit a --t 0, f can be calculated analytically as 

" [  2 (3 ( 31 01 
f ( ( Y . g = f , Y = O , E , ) = - - l n L n a + -  In - + I - l n  1 - -  + O ( d )  

2 

and 

01 1 f ( 0 1 , g  = z, y =a,€-) = - -I  
2 

Note that f is greater than the corresponding value in the Hopfield model and in the lowest 
order in a they coincide to f + -(01/2)ln01 [21,27]. 

4.2. A general Hamming distance g to a pattern 

We still consider f = lim,v+m(l/N)In((N) at its maximum with respect to E. The 
Hamming distance g is a free parameter now. If the metastable states were equally 
distributed in the phase space {-1, +1)" our result at general g would be 

for all g < 4. Especially at lower values of g there are many more metastable states than 
predicted by equation (26). 

As a key result of our paper we observe areas around the patterns in which nearly no 
metastable states exist (see figure 3). This is because of Jensen's inequality (9): the upper 
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0.1 

00 l4&% 
-0 TL----l 3 

0.00 0.10 0.20 0,JO 0.K 0.50 

9 

f ~~~~ 

0.0 

-0 f 

-0.2 

-0 3 

0.00 0.20 0.39 0,40 0.50 ,*, 
9 

F i w 3 .  f(a,g,y,~,)asafun~onofgfora=0.01,0.1,0.25,0.5and0.9fmmbo~tom 
to top for (U)  y = 0 and (b) y =a .  

bound for the number of metastable states is already zero in these areas. We denote the 
zeros of f with respect to g by go. If one starts a serial T = 0 Glauber process at g < go, 
nearly no metastable state prevents the system from flowing to the pattern. Therefore the 
zeros go in figure 3 can serve as lower bounds for the sizes of the basins of attraciion (see 
191). These lower bounds are shown in figure 4. If we define a, to be the critical storage 
capacity where the radius of attraction becomes zero, we can conclude from the lower 
bounds in figure 4 that ac 2 for y = 0 and ac = 1 for y = a. This can also be derived 
analytically [27]. The thermodynamic calculation in [9] also yields the result ac = 1. This 
is an important check for OUT ansatz y = a in equation (18). The result a& = 0) = 5 
has already been derived by Kanter and Sompolinsky [9]. They showed that states, which 
differ from a pattern in only one site, are also metastable. We can support their reasoning 
by noting that for y = 0 and a 2 1 there are exponentially many metastable states in each 
vicinity of the pattern. Hence it is likely that the system is prevented from flowing to the 
ground state. 

I 

a 

Figure 4. The zems go of the function f ( a ,  g,  y. em-) with respect to g are shown in the cases 
y = a (broken line) and y = 0 (MI line). Note that go + ~ ( C X  -+ 0)  in both cases and hal 
go(@) = o for a > f in the y = a  case. 
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4.3. The energy dependence off 

We examine the dependence of 

P Kuhlmann ~ n d  J K Anlauf 

f@, g ,  Y? 4 
on E at the maximum g = 4. Hence only metastable states that are uncorrelated to all the 
pattems are considered. Since eNf provides an upper bound for the number of metastable 
states N ,  we can adopt the same reasoning as in the SK model to gain information about the 
energy of the spin-glass state. In the PR" the spin-glass state is a solution of the replica 
symmetric thermodynamic calculation in [9]. It is uncorrelated to all the patterns and should 
therefore be a particular metastable state at g = f .  Consequently, if we denote its energy 
by Eo = --NEG, the zero of f with respect to E should yield an upper bound for CO. 

As outlined above in section 2 we must set this stability parameter to y = or in order 
to establish a relationship between OUT calculation and the thermodynamic calculation in 
191. For each a the dependence of f (or. g = 4, y = or. 6) on 6 can be plotted. We shall 
call these curves energy spectra. They are shown in figure 5 .  The spectra are similar to 
the analogous curve in the SK model [NI. The right and left zeros o f f  and the cm are 
illustrated in figure 6. The right zeros provide upper bounds for the values of EO. 

0.2 

f 

I 0 . 2 5 '  ~ , , . , , ~ , , , , 
t 

0.25 , O b  0.35 0.40 0.45 0 M 010 011 d? 0: )  014 Pi5 0'8 0.7 018 QiS 1'0 

& a 

Figurr 5. "he eoergy spectra (6, f (U. g = 4. y = 
u , f ) )  fora = 0.1 and 01 = 0.6. 

F i w  6. Full lines refer to the upper and the lower 
zeros in the s p e m  ( E ,  f(6)) for different U and at 
8 = t. y =U. The simulation results [91 for the mean 
energies of the final states in a serial T = 0 Glauber 
process are represented by mosses. They are found to 
tie in between the curve of the upper rems and the c w e  
of the maxima emu: in the s p e m  @token line). 

In contradiction to that, the replica symmetric solution of [9] yields 

and for or > UG, it does not predict any spin-glass state. We believe that the thermodynamic 
spin-glass state exists for all or e 1 and that or0 < 1 is an artifact of the replica symmetric 
ansatz in [9]. The corresponding curve of the BQ should be lower than the curve of the right 
zeros. In fact, numerical results of Kanter and Sompolinsky for the mean energy of the 
final states in a T = 0 serial Glauber process [9] are found to be located between the curve 
of the right zeros and the curve of the E ~ .  Similar results have already been obtained for 
the SK Sph glaSS 1291. 
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5. Discussion 

Although we calculated an exact upper bound for the number of metastable states in the 
projection rule neural network the question remains whether the equal sign holds in Jensen's 
inequality (9). The regions of the parameter space in which 

1 1 
l i  - i n N  = lim - In((N)) 

N-m N N+m N 
holds can only be determined by a replica calculation of the self-averaging quantity 

In order to prove equation (27) it has to be shown that all the overlaps Q, between 
different replica p and U are zero. As is known from the SK model [19] and from other 
models of neural networks [30], the replica symmetric calculation of h yields g o d  results 
for the ground-state energy. They are even comparable to a replica symmetry breaking 
(RSB) thermodynamic calculation. 

It will also be interesting to examine whether h reaches the upper bound f in the limit 
LY + 1. Even in the y = (Y case where the patterns are unstable for cx = 1 we obtain the 
results 

(29) ~ ( L Y , ~ = Z , Y = L Y , E = E - ) ' ~ ~ ~  1 ((U+ 1). 

Thus it should be clarified whether h has the same limit. 
Finally we address two problems that arise in section 4.2 where f is considered as a 

function of the Hamming distance g. 
First the discrepancy between the actual value for the radius of attraction and its lower 

bound is considered. Obviously the calculation of the number N of metastable states cannot 
predict this dynamic property exactly, because N is much smaller than the number of general 
states. So during the serial T = 0 Glauber process the system walks along general states 
to lower energies. Therefore the dynamics does not notice the existence of exponentially 
many metastable states. 

The second problem is the discontinuity 

fk = 0) # f@ -+ O+) 
(see figure 3). Since the patterns are metastable, N = 1 and f(g = 0) > 0 must hold. 
The discontinuity can be illustrated by noting that the projection matrix discems between 
general states and states that lie in the space spanned by the pattems. To make this more 
explicit, we consider the order parameter 

where the up are the coefficients in the superposition (14) for a metastable state 2. In the 
l i t  g + 0 we obtain from an analytic treatment of the saddlepoint equations 

z = 4 g  + y  +O(g2). 
2(1 - 01) 

In general the order parameter Z is a monotonously increasing function of g. Hence for 
any g t 0 it follows that Z > 0, and thus the patterns p = 2,. . . , p should contribute to 
a metastable state 2. When f passes its zero go this requirement and the requirement of 
metastability can no longer be satisfied simultaneously. 
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6. Summary 

For the projection rule neural network the following main results about the structure of the 
metastable states have been gained 

(i) An upper bound eNf for the total number of metastable states N has been calculated 
in the limit N -+ CO. The remanent magnetization m, is found to behave similarly to f .  

(ii) By investigating the dependence of f on the Hamming distance g we observe that 
there are areas around the patterns in which nearly no metastable states exist. Since these 
areas are lower bounds for the sizes of the basins of attnction in a serial dynamic process, 
the critical storage capacity a,(y =a) = 1 is proved. 

(iii) In the y = a case the energy dependence of f has been examined. We show that 
the replica symmetric ansatz in [9] yields incorrect results for the negative energy EG of the 
thermodynamic spin-glass state& Our upper bound for EG is checked with respect to the 
mean negative energy EF of the final states in a serial T = 0 Glauber process. As expected, 
our upper bound cg fulfils 

P Kuhlmann and J K Aniauf 

EB(ff) > CF(U) 

for ff < 1. 
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Appendix 

We calculate the mean number of metastable states in the P R "  by formula (21). By applying 
the Fourier representation of the 6 function and of the 0 function 

rm 

we obtain 
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The inverse of the correlation matrix is removed by noting that 
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Thus we first introduce 

in equation (A.3) using the Fourier representation (A.1). In a second step the transformation 
of variables 

is applied and we obtain 

N(a, g, Y, 6 )  

We rescale 

and omit the primes in the following. It can be shown by a replica calculation that det C is 
self-averaging [27] for N + 03 and that we can set 

detC-expN[-cr-(l -u)ln(l -CY) ] .  (A.@ 
The direct average over the patterns /I = 2, . . . , p c& then easily be performed, and we 
obtain 
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where 
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Finally we introduce these abbreviations as order parameters by 

(A.lO) 

and similarly for Y and Z. 

saddle-point method can be applied to calculate 
It is then possible to decouple the variables a,, I, from the variables A j ,  p, and the 

(A.11) 

The saddle-point equations for the variables 2,  j ,  ? become algebraic. After the insertion 
of i ,  9 ,  ?, equation (24) is obtained. 
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